Applies ToWersja subskrypcyjna programu SharePoint Server SharePoint Server 2019 SharePoint Server 2016 SharePoint Server 2013 SharePoint Server 2013 Enterprise Program Microsoft Office SharePoint Online na platformie Microsoft 365 SharePoint Foundation 2010 SharePoint Server 2010 Microsoft Office SharePoint Online na platformie Microsoft 365 Small Business Windows SharePoint Services 3.0

Returns the inverse of the cumulative beta probability distribution function. That is, if probability = BETADIST(x,...), then BETAINV(probability,...) = x. The cumulative beta distribution can be used in project planning to model probable completion times given an expected completion time and variability.

Syntax

BETAINV(probability,alpha,beta,A,B)

Probability     is a probability associated with the beta distribution.

Alpha     is a parameter to the distribution.

Beta     is a parameter to the distribution.

A     is an optional lower bound to the interval of x.

B     is an optional upper bound to the interval of x.

Remarks

  • If any argument is nonnumeric, BETAINV returns the #VALUE! error value.

  • If alpha ≤ 0 or beta ≤ 0, BETAINV returns the #NUM! error value.

  • If probability ≤ 0 or probability > 1, BETAINV returns the #NUM! error value.

  • If you omit values for A and B, BETAINV uses the standard cumulative beta distribution, so that A = 0 and B = 1.

BETAINV uses an iterative technique for calculating the function. Given a probability value, BETAINV iterates until the result is accurate to within ±3x10^-7. If BETAINV does not converge after 100 iterations, the function returns the #N/A error value.

Example

Probability

Alpha

Beta

A

B

Formula

Description (Result)

0.685470581

8

10

1

3

=BETAINV([Probability],[Alpha],[Beta],[A],[B])

Inverse of the cumulative beta probability density function for the parameters (2)

Potrzebujesz dalszej pomocy?

Chcesz uzyskać więcej opcji?

Explore subscription benefits, browse training courses, learn how to secure your device, and more.

Communities help you ask and answer questions, give feedback, and hear from experts with rich knowledge.